299
Small RNAs – The Big Players in Developing Salt-Resistant Plants
Sun, X., Korir, N. K., Han, J., Shangguan, L. F., Kayesh, E., Leng, X. P., & Fang, J. G.,
(2012). Characterization of grapevine microR164 and its target genes. Molecular Biology
Reports, 39(10), 9463–9472. https://doi.org/10.1007/s11033-012-1811-9.
Sun, X., Xu, L., Wang, Y., Yu, R., Zhu, X., Luo, X., Gong, Y., et al., (2015). Identification of
novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt
stress response in radish (Raphanus sativus L.). BMC Genomics, 16(1), 1–16. https://doi.
org/10.1038/srep14024.
Sunkar, R., & Jagadeeswaran, G., (2008). In silico identification of conserved microRNAs
in large number of diverse plant species. BMC Plant Biology, 8(1), 1–13. https://doi.
org/10.1186/1471-2229-8-37.
Sunkar, R., & Zhu, J. K., (2004). Novel and stress-regulated microRNAs and other small
RNAs from Arabidopsis. The Plant Cell, 16(8), 2001–2019. https://doi.org/10.1105/
tpc.104.022830.
Sunkar, R., Li, Y. F., & Jagadeeswaran, G., (2012). Functions of microRNAs in plant
stress responses. Trends in Plant Science, 17(4), 196–203. https://doi.org/10.1016/j.tplan
ts.2012.01.010.
Surekha, C., Aruna, L., Hossain, M. A., Wani, S. H., & Neelapu, N. R. R., (2015). Present
status and future prospects of transgenic approaches for salt tolerance in plants/crop plants.
In: Wani, S. H., & Hossain, M. A., (eds.), Managing Salt Tolerance in Plants: Molecular
and Genomic Perspectives (pp. 329–352). CRC Press: New York, NY, USA.
Szczesniak, M. W., Deorowicz, S., Gapski, J., Kaczynski, Ł., & Makałowska, I., (2012).
miRNEST database: An integrative approach in microRNA search and annotation. Nucleic
Acids Research, 40(D1), D198–D204. https://doi.org/10.1093/nar/gkr1159.
Tabara, H., Grishok, A., & Mello, C. C., (1998). RNAi in C. elegans: Soaking in the genome
sequence. Science, 282(5388), 430, 431. https://doi.org/10.1126/science.282.5388.430.
Thakur, A., (2003). RNA interference revolution. Electronic Journal of Biotechnology, 6(1),
1–2. https://doi.org/10.1038/ncomms4722.
Thieme, C. J., Gramzow, L., Lobbes, D., & Theißen, G., (2011). SplamiR—prediction of
spliced miRNAs in plants. Bioinformatics, 27(9), 1215–1223. 10.1186/1471-2164-10–366.
https://doi.org/10.1093/bioinformatics/btr132.
Vaucheret, H., (2006). Post-transcriptional small RNA pathways in plants: Mechanisms and
regulations. Genes & Development, 20(7), 759–771. https://doi.org/10.1101/gad.1410506.
Vaucheret, H., (2008). Plant argonautes. Trends in Plant Science, 13(7), 350–358. https://doi.
org/10.1016/j.tplants.2008.04.007.
Vazquez, F., Vaucheret, H., Rajagopalan, R., Lepers, C., Gasciolli, V., Mallory, A. C., Hilbert, J.
L., et al., (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis
mRNAs. Molecular Cell, 16(1), 69–79. https://doi.org/10.1016/j.molcel.2004.09.028.
Vert, J. P., Foveau, N., Lajaunie, C., & Vandenbrouck, Y., (2006). An accurate and
interpretable model for siRNA efficacy prediction. BMC Bioinformatics, 7(1), 1–17. https://
doi.org/10.1186/1471-2105-7-520.
Voinnet, O., & Baulcombe, D. C., (1997). Systemic signaling in gene silencing. Nature,
389(6651), 553. https://doi.org/10.1038/39215.
Voinnet, O., (2009). Origin, biogenesis, and activity of plant microRNAs. Cell, 136(4), 669–
687. https://doi.org/10.1016/j.cell.2009.01.046.
Voinnet, O., Vain, P., Angell, S., & Baulcombe, D. C., (1998). Systemic spread of sequence-
specific transgene RNA degradation in plants is initiated by localized introduction of ectopic
promoterless DNA. Cell, 95(2), 177–187. https://doi.org/10.1016/S0092-8674(00)81749-3.