299

Small RNAs – The Big Players in Developing Salt-Resistant Plants

Sun, X., Korir, N. K., Han, J., Shangguan, L. F., Kayesh, E., Leng, X. P., & Fang, J. G.,

(2012). Characterization of grapevine microR164 and its target genes. Molecular Biology

Reports, 39(10), 9463–9472. https://doi.org/10.1007/s11033-012-1811-9.

Sun, X., Xu, L., Wang, Y., Yu, R., Zhu, X., Luo, X., Gong, Y., et al., (2015). Identification of

novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt

stress response in radish (Raphanus sativus L.). BMC Genomics, 16(1), 1–16. https://doi.

org/10.1038/srep14024.

Sunkar, R., & Jagadeeswaran, G., (2008). In silico identification of conserved microRNAs

in large number of diverse plant species. BMC Plant Biology, 8(1), 1–13. https://doi.

org/10.1186/1471-2229-8-37.

Sunkar, R., & Zhu, J. K., (2004). Novel and stress-regulated microRNAs and other small

RNAs from Arabidopsis. The Plant Cell, 16(8), 2001–2019. https://doi.org/10.1105/

tpc.104.022830.

Sunkar, R., Li, Y. F., & Jagadeeswaran, G., (2012). Functions of microRNAs in plant

stress responses. Trends in Plant Science, 17(4), 196–203. https://doi.org/10.1016/j.tplan

ts.2012.01.010.

Surekha, C., Aruna, L., Hossain, M. A., Wani, S. H., & Neelapu, N. R. R., (2015). Present

status and future prospects of transgenic approaches for salt tolerance in plants/crop plants.

In: Wani, S. H., & Hossain, M. A., (eds.), Managing Salt Tolerance in Plants: Molecular

and Genomic Perspectives (pp. 329–352). CRC Press: New York, NY, USA.

Szczesniak, M. W., Deorowicz, S., Gapski, J., Kaczynski, Ł., & Makałowska, I., (2012).

miRNEST database: An integrative approach in microRNA search and annotation. Nucleic

Acids Research, 40(D1), D198–D204. https://doi.org/10.1093/nar/gkr1159.

Tabara, H., Grishok, A., & Mello, C. C., (1998). RNAi in C. elegans: Soaking in the genome

sequence. Science, 282(5388), 430, 431. https://doi.org/10.1126/science.282.5388.430.

Thakur, A., (2003). RNA interference revolution. Electronic Journal of Biotechnology, 6(1),

1–2. https://doi.org/10.1038/ncomms4722.

Thieme, C. J., Gramzow, L., Lobbes, D., & Theißen, G., (2011). SplamiR—prediction of

spliced miRNAs in plants. Bioinformatics, 27(9), 1215–1223. 10.1186/1471-2164-10–366.

https://doi.org/10.1093/bioinformatics/btr132.

Vaucheret, H., (2006). Post-transcriptional small RNA pathways in plants: Mechanisms and

regulations. Genes & Development, 20(7), 759–771. https://doi.org/10.1101/gad.1410506.

Vaucheret, H., (2008). Plant argonautes. Trends in Plant Science, 13(7), 350–358. https://doi.

org/10.1016/j.tplants.2008.04.007.

Vazquez, F., Vaucheret, H., Rajagopalan, R., Lepers, C., Gasciolli, V., Mallory, A. C., Hilbert, J.

L., et al., (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis

mRNAs. Molecular Cell, 16(1), 69–79. https://doi.org/10.1016/j.molcel.2004.09.028.

Vert, J. P., Foveau, N., Lajaunie, C., & Vandenbrouck, Y., (2006). An accurate and

interpretable model for siRNA efficacy prediction. BMC Bioinformatics, 7(1), 1–17. https://

doi.org/10.1186/1471-2105-7-520.

Voinnet, O., & Baulcombe, D. C., (1997). Systemic signaling in gene silencing. Nature,

389(6651), 553. https://doi.org/10.1038/39215.

Voinnet, O., (2009). Origin, biogenesis, and activity of plant microRNAs. Cell, 136(4), 669–

687. https://doi.org/10.1016/j.cell.2009.01.046.

Voinnet, O., Vain, P., Angell, S., & Baulcombe, D. C., (1998). Systemic spread of sequence-

specific transgene RNA degradation in plants is initiated by localized introduction of ectopic

promoterless DNA. Cell, 95(2), 177–187. https://doi.org/10.1016/S0092-8674(00)81749-3.